Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 115
1.
Front Neural Circuits ; 18: 1384621, 2024.
Article En | MEDLINE | ID: mdl-38736977

The posterior intralaminar thalamic nucleus (PIL) and peripeduncular nucleus (PP) are two adjoining structures located medioventral to the medial geniculate nucleus. The PIL-PP region plays important roles in auditory fear conditioning and in social, maternal and sexual behaviors. Previous studies often lumped the PIL and PP into single entity, and therefore it is not known if they have common and/or different brain-wide connections. In this study, we investigate brain-wide efferent and afferent projections of the PIL and PP using reliable anterograde and retrograde tracing methods. Both PIL and PP project strongly to lateral, medial and anterior basomedial amygdaloid nuclei, posteroventral striatum (putamen and external globus pallidus), amygdalostriatal transition area, zona incerta, superior and inferior colliculi, and the ectorhinal cortex. However, the PP rather than the PIL send stronger projections to the hypothalamic regions such as preoptic area/nucleus, anterior hypothalamic nucleus, and ventromedial nucleus of hypothalamus. As for the afferent projections, both PIL and PP receive multimodal information from auditory (inferior colliculus, superior olivary nucleus, nucleus of lateral lemniscus, and association auditory cortex), visual (superior colliculus and ectorhinal cortex), somatosensory (gracile and cuneate nuclei), motor (external globus pallidus), and limbic (central amygdaloid nucleus, hypothalamus, and insular cortex) structures. However, the PP rather than PIL receives strong projections from the visual related structures parabigeminal nucleus and ventral lateral geniculate nucleus. Additional results from Cre-dependent viral tracing in mice have also confirmed the main results in rats. Together, the findings in this study would provide new insights into the neural circuits and functional correlation of the PIL and PP.


Intralaminar Thalamic Nuclei , Neural Pathways , Animals , Rats , Mice , Male , Neural Pathways/physiology , Intralaminar Thalamic Nuclei/physiology , Mice, Inbred C57BL , Rats, Sprague-Dawley , Female
2.
Commun Biol ; 7(1): 480, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641731

Triglyceride (TAG) deposition in the liver is associated with metabolic disorders. In lower vertebrate, the propensity to accumulate hepatic TAG varies widely among fish species. Diacylglycerol acyltransferases (DGAT1 and DGAT2) are major enzymes for TAG synthesis. Here we show that large yellow croaker (Larimichthys crocea) has significantly higher hepatic TAG level than that in rainbow trout (Oncorhynchus mykiss) fed with same diet. Hepatic expression of DGATs genes in croaker is markedly higher compared with trout under physiological condition. Meanwhile, DGAT1 and DGAT2 in both croaker and trout are required for TAG synthesis and lipid droplet formation in vitro. Furthermore, oleic acid treatment increases DGAT1 expression in croaker hepatocytes rather than in trout and has no significant difference in DGAT2 expression in two fish species. Finally, effects of various transcription factors on croaker and trout DGAT1 promoter are studied. We find that DGAT1 is a target gene of the transcription factor CREBH in croaker rather than in trout. Overall, hepatic expression and transcriptional regulation of DGATs display significant species differences between croaker and trout with distinct hepatic triglyceride deposition, which bring new perspectives on the use of fish models for studying hepatic TAG deposition.


Diacylglycerol O-Acyltransferase , Perciformes , Animals , Triglycerides/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Diglycerides/metabolism , Liver/metabolism , Hepatocytes/metabolism , Perciformes/genetics
3.
J Nutr ; 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38460786

BACKGROUND: Sterol regulatory element binding protein (SREBP) 1 is considered to be a crucial regulator for lipid synthesis in vertebrates. However, whether SREBP1 could regulate hepatic gluconeogenesis under high-fat diet (HFD) condition is still unknown, and the underlying mechanism is also unclear. OBJECTIVES: This study aimed to determine gluconeogenesis-related gene and protein expressions in response to HFD in large yellow croaker and explore the role and mechanism of SREBP1 in regulating the related transcription and signaling. METHODS: Croakers (mean weight, 15.61 ± 0.10 g) were fed with diets containing 12% crude lipid [control diet (ND)] or 18% crude lipid (HFD) for 10 weeks. The glucose tolerance, insulin tolerance, hepatic gluconeogenesis-related genes, and proteins expressions were determined. To explore the role of SREBP1 in HFD-induced gluconeogenesis, SREBP1 was inhibited by pharmacologic inhibitor (fatostatin) or genetic knockdown in croaker hepatocytes under palmitic acid (PA) condition. To explore the underlying mechanism, luciferase reporter and chromatin immunoprecipitation assays were conducted in HEK293T cells. Data were analyzed using analysis of variance or Student t test. RESULTS: Compared with ND, HFD increased the mRNA expressions of gluconeogenesis genes (2.40-fold to 2.60-fold) (P < 0.05) and reduced protein kinase B (AKT) phosphorylation levels (0.28-fold to 0.34-fold) (P < 0.05) in croakers. However, inhibition of SREBP1 by fatostatin addition or SREBP1 knockdown reduced the mRNA expressions of gluconeogenesis genes (P < 0.05) and increased AKT phosphorylation levels (P < 0.05) in hepatocytes, compared with that by PA treatment. Moreover, fatostatin addition or SREBP1 knockdown also increased the mRNA expressions of irs1 (P < 0.05) and reduced serine phosphorylation of IRS1 (P < 0.05). Furthermore, SREBP1 inhibited IRS1 transcriptions by binding to its promoter and induced IRS1 serine phosphorylation by activating diacylglycerol-protein kinase Cε signaling. CONCLUSIONS: This study reveals the role of SREBP1 in hepatic gluconeogenesis under HFD condition in croakers, which may provide a potential strategy for improving HFD-induced glucose intolerance.

4.
Pharmacol Biochem Behav ; 237: 173726, 2024 Apr.
Article En | MEDLINE | ID: mdl-38360104

BACKGROUND: Some studies have highlighted the crucial role of aversion in addiction treatment. The pathway from the anterior paraventricular thalamus (PVT) to the shell of the nucleus accumbens (NAc) has been reported as an essential regulatory pathway for processing aversion and is also closely associated with substance addiction. However, its impact on alcohol addiction has been relatively underexplored. Therefore, this study focused on the role of the PVT-NAc pathway in the formation and relapse of alcohol addiction-like behaviour, offering a new perspective on the mechanisms of alcohol addiction. RESULTS: The chemogenetic inhibition of the PVT-NAc pathway in male mice resulted in a notable decrease in the establishment of ethanol-induced conditioned place aversion (CPA), and NAc-projecting PVT neurons were recruited due to aversive effects. Conversely, activation of the PVT-NAc pathway considerably impeded the formation of ethanol-induced conditioned place preference (CPP). Furthermore, during the memory reconsolidation phase, activation of this pathway effectively disrupted the animals' preference for alcohol-associated contexts. Whether it was administered urgently 24 h later or after a long-term withdrawal of 10 days, a low dose of alcohol could still not induce the reinstatement of ethanol-induced CPP. CONCLUSIONS: Our results demonstrated PVT-NAc circuit processing aversion, which may be one of the neurobiological mechanisms underlying aversive counterconditioning, and highlighted potential targets for inhibiting the development of alcohol addiction-like behaviour and relapse after long-term withdrawal.


Alcoholism , Nucleus Accumbens , Mice , Male , Animals , Nucleus Accumbens/metabolism , Alcoholism/metabolism , Thalamus , Ethanol/pharmacology , Ethanol/metabolism , Recurrence
5.
Oncologist ; 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38381603

Anaplastic lymphoma kinase (ALK) rearrangement is a well-known driver oncogene detected in approximately 5% of non-small cell lung cancer. However, ALK rearrangement is much less frequent in other solid tumors outside the lungs, such as colorectal cancer (CRC); thus, the optimal management of CRC with ALK rearrangements has yet to be established. In this report, we describe 2 cases of ALK-positive CRC, both of which benefited from ALK tyrosine kinase inhibitor (ALK-TKI) therapy. Case 1 was a postoperative patient with poorly differentiated colon adenocarcinoma, who was diagnosed with metastatic relapse shortly after surgery. Both fluorouracil, leucovorin, and oxaliplatin (FOLFOX) and bevacizumab combined with 5-fluorouracil, l-leucovorin, and irinotecan (FOLFIRI) proved ineffective against the disease. The patient was then treated with ensartinib, as the CAD-ALK fusion gene was detected by genomic analysis. The patient was initially treated with ensartinib monotherapy for 9 months, then with ensartinib combined with local radiotherapy and fruquintinib for another 4 months for isolated hilar hepatic lymph node metastasis. The patient experienced disease progression with an acquired ALK G1202R resistance mutation that responded well to lorlatinib. Case 2 involved a 72-year-old man with advanced colon cancer (pT4bN2aM1b, stage IV) harboring an EML4-ALK fusion. The patient underwent resection of the right colon tumor due to intestinal obstruction, but the disease continued to progress after 12 courses of FOLFIRI and bevacizumab chemotherapy. However, the patient responded remarkably well to alectinib. Our report emphasizes the importance of gene detection in the treatment of malignant tumors, and the significance of ALK mutations in CRC.

6.
J Am Chem Soc ; 146(6): 3890-3899, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38294957

Topological insulators offer significant potential to revolutionize diverse fields driven by nontrivial manifestations of their topological electronic band structures. However, the realization of superior integration between exotic topological states and superconductivity for practical applications remains a challenge, necessitating a profound understanding of intricate mechanisms. Here, we report experimental observations for a novel superconducting phase in the pressurized second-order topological insulator candidate Ta2Pd3Te5, and the high-pressure phase maintains its original ambient pressure lattice symmetry up to 45 GPa. Our in situ high-pressure synchrotron X-ray diffraction, electrical transport, infrared reflectance, and Raman spectroscopy measurements, in combination with rigorous theoretical calculations, provide compelling evidence for the association between the superconducting behavior and the densified phase. The electronic state change around 20 GPa was found to modify the topology of the Fermi surface directly, which synergistically fosters the emergence of robust superconductivity. In-depth comprehension of the fascinating properties exhibited by the compressed Ta2Pd3Te5 phase is achieved, highlighting the extraordinary potential of topological insulators for exploring and investigating high-performance electronic advanced devices under extreme conditions.

7.
Br J Nutr ; 131(4): 553-566, 2024 02 28.
Article En | MEDLINE | ID: mdl-37699661

Sterol regulatory element-binding protein 2 (SREBP2) is considered to be a major regulator to control cholesterol homoeostasis in mammals. However, the role of SREBP2 in teleost remains poorly understand. Here, we explored the molecular characterisation of SREBP2 and identified SREBP2 as a key modulator for 3-hydroxy-3-methylglutaryl-coenzyme A reductase and 7-dehydrocholesterol reductase, which were rate-limiting enzymes of cholesterol biosynthesis. Moreover, dietary palm oil in vivo or palmitic acid (PA) treatment in vitro elevated cholesterol content through triggering SREBP2-mediated cholesterol biosynthesis in large yellow croaker. Furthermore, our results also found that PA-induced activation of SREBP2 was dependent on the stimulating of endoplasmic reticulum stress (ERS) in croaker myocytes and inhibition of ERS by 4-Phenylbutyric acid alleviated PA-induced SREBP2 activation and cholesterol biosynthesis. In summary, our findings reveal a novel insight for understanding the role of SREBP2 in the regulation of cholesterol metabolism in fish and may deepen the link between dietary fatty acid and cholesterol biosynthesis.


Dietary Fats, Unsaturated , Perciformes , Animals , Cholesterol/metabolism , Endoplasmic Reticulum Stress , Muscles/metabolism , Palm Oil/pharmacology , Perciformes/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism
8.
Transl Oncol ; 40: 101843, 2024 Feb.
Article En | MEDLINE | ID: mdl-38101175

Previous studies have demonstrated that carbohydrate sulfotransferase family proteins (CHSTs) play a crucial role in the extracellular matrix structural constituent and cancer progression, however, the effect of CHSTs on gastric cancer is still superficial. To investigate these, our study seeks to provide a comprehensive understanding of CHSTs' expression, immune infiltration, and prognostic implications in gastric cancer, utilizing data from the TCGA, GEO and GTEx databases. Furthermore, we conducted experimental validation to elucidate the role of CHST14 specifically in gastric cancer. Our findings suggest that most CHSTs were highly expressed in gastric cancer. Gene copy number variations further indicated prevalent CHSTs amplification in gastric cancer, pointing to its potential relevance in disease progression. Intriguingly, we noted strong positive correlations between most CHSTs and immune cell infiltration. Importantly, most members of CHSTs were related to OS and PFI with gastric cancer, with particular emphasis on CHST14 and CHST9. Multifactorial regression analysis indicates that CHST14 is an independent prognostic factor influencing the overall survival of gastric cancer patients. In further experimental validation, our results demonstrate elevated expression of CHST14 in gastric cancer, and knocking down CHST14 inhibits gastric cancer cell proliferation, invasion, migration and EMT. Additionally, CHST14 may exert its function through the regulation of the Wnt pathway. In summary, our study comprehensively analyzes the hitherto undescribed role of CHSTs in gastric cancer through the analysis of multi-omics data. Importantly, we identify CHST14 as a pivotal promoter in the malignant progression of gastric cancer, offering potential targets for gastric cancer therapy.

9.
Am J Drug Alcohol Abuse ; 49(6): 746-755, 2023 11 02.
Article En | MEDLINE | ID: mdl-38059570

Background: Overwhelming evidence suggests that increasing alcohol taxes is an effective strategy for curbing alcohol consumption. However, research on the effects of such strategies in low- and middle-income nations is limited.Objective: The aim is to explore the temporal effect of alcohol tax policy in China.Methods: We employ interrupted time series analysis to investigate the temporal effects of tax policy changes on alcohol consumption and related consequences in Mainland China from 1961 to 2019. The study population, the total population of mainland region of China, aged more than 15 years.Results: The results show that the volume tax policy, which was announced in 2000 and implemented in 2001, led to an immediate reduction in the alcohol consumption (coefficient = -0.429, p < .001). Following the implementation of higher alcohol taxes in 1998 and 2001, the prevalence of alcohol use disorders (AUDs) and related years lived with disability (YLDs) gradually decreased. The relaxation of tax policy in 2006 led to a significant increase in alcohol consumption, both immediately (coefficient = 0.406, p < .001) and in the middle term (coefficient = 0.495, p < .001), as well as contribute to an immediate or medium term significant increase in the prevalence of AUDs (coefficient = 0.038, p = .010; coefficient = 0.032, p < .001) and YLDs (coefficient = 4.363, p = .001; coefficient = 4.226, p < .001).Conclusion: This study demonstrates that changes in alcohol consumption and related consequences (increase or decrease) have followed corresponding changes in alcohol tax policies (easing or tightening), indicating that increasing alcohol taxes can be an effective strategy in China for controlling alcohol consumption and related harms.


Alcoholism , Humans , Alcoholism/epidemiology , Alcoholism/prevention & control , Interrupted Time Series Analysis , Alcohol Drinking/epidemiology , Public Policy , Taxes , China/epidemiology , Alcoholic Beverages
10.
Inorg Chem ; 62(47): 19279-19287, 2023 Nov 27.
Article En | MEDLINE | ID: mdl-37950692

Hard and superconducting materials play significant roles in their respective application areas and are also crucial research fields in condensed matter physics. Materials with the key properties of both hard and superconducting properties could lead to technology development, but it is also full of challenges. Herein, we report the synthesis of high-quality metastable W3P single crystals with superconductivity and excellent mechanical properties. The synergistic effect of temperature and pressure was effective in suppressing further decomposition of metastable W3P as-synthesized by our synthesis technique (high-pressure and high-temperature method). The transport and magnetic measurements indicate that W3P is a typical type-II BCS superconductor, displaying a superconducting transition temperature of 5.9 K and an impressive critical magnetic field of 4.35 T. Theory calculations reveal a metallic property in W3P, and the phonon modes of the vibration of W atoms are important for electron-phonon interaction. Meanwhile, W3P shows excellent mechanical properties with a high fracture toughness of 8 MPa m1/2 and an impressive asymptotic hardness of 22 GPa, which is currently reported as being the hardest among transition metal phosphides. It opens up a new class of advanced materials that combine excellent mechanical properties with superconductivity.

11.
Front Immunol ; 14: 1252347, 2023.
Article En | MEDLINE | ID: mdl-37876929

Background: Membranous nephropathy (MN) is an autoimmune glomerular disease that is predominantly mediated by immune complex deposition and complement activation. The aim of this study was to identify key biomarkers of MN and investigate their association with immune-related mechanisms, inflammatory cytokines, chemokines and chemokine receptors (CCRs). Methods: MN cohort microarray expression data were downloaded from the GEO database. Differentially expressed genes (DEGs) in MN were identified, and hub genes were determined using a protein-protein interaction (PPI) network. The relationships between immune-related hub genes, immune cells, CCRs, and inflammatory cytokines were examined using immune infiltration analysis, gene set enrichment analysis (GSEA), and weighted gene co-expression network analysis (WGCNA). Finally, the immune-related hub genes in MN were validated using ELISA. Results: In total, 501 DEGs were identified. Enrichment analysis revealed the involvement of immune- and cytokine-related pathways in MN progression. Using WGCNA and immune infiltration analysis, 2 immune-related hub genes (CYBB and CSF1R) were identified. These genes exhibited significant correlations with a wide range of immune cells and were found to participate in B cell/T cell receptor and chemokine signaling pathways. In addition, the expressions of 2 immune-related hub genes were positively correlated with the expression of CCR1, CX3CR1, IL1B, CCL4, TNF, and CCR2. Conclusion: Our study identified CSF1 and CYBB as immune-related hub genes that potentially influence the expression of CCRs and pro-inflammatory cytokines (CCR1, CX3CR1, IL1B, CCL4, TNF, and CCR2). CSF1 and CYBB may be potential biomarkers for MN progression, providing a perspective for diagnostic and immunotherapeutic targets of MN.


Autoimmune Diseases , Glomerulonephritis, Membranous , Humans , Glomerulonephritis, Membranous/diagnosis , Glomerulonephritis, Membranous/genetics , Inflammation/genetics , Biomarkers , Computational Biology , Cytokines/genetics
12.
J Cell Mol Med ; 27(20): 3090-3106, 2023 Oct.
Article En | MEDLINE | ID: mdl-37555915

BACKGROUND: Malignant cell growth and chemoresistance, the main obstacles in treating gastrointestinal cancer (GIC), rely on the Hippo and p53 signalling pathways. However, the upstream regulatory mechanisms of these pathways remain complex and poorly understood. METHODS: Immunohistochemistry (IHC), western blot and RT-qPCR were used to analyse the expression of RNF146, miR-3133 and key components of Hippo and p53 pathway. CCK-8, colony formation, drug sensitivity assays and murine xenograft models were used to investigate the effect of RNF146 and miR-3133 in GIC. Further exploration of the upstream regulatory mechanism was performed using bioinformatics analysis, dual-luciferase reporter gene, immunoprecipitation assays and bisulfite sequencing PCR (BSP). RESULTS: Clinical samples, in vitro and in vivo experiments demonstrated that RNF146 exerts oncogenic effects in GIC by regulating the Hippo pathway. Bioinformatics analysis identified a novel miRNA, miR-3133, as an upstream regulatory factor of RNF146. fluorescence in situ hybridization and RT-qPCR assays revealed that miR-3133 was less expressed in gastrointestinal tumour tissues and was associated with adverse pathological features. Functional assays and animal models showed that miR-3133 promoted the proliferation and chemotherapy sensitivity of GIC cells. miR-3133 affected YAP1 protein expression by targeting RNF146, AGK and CUL4A, thus activating the Hippo pathway. miR-3133 inhibited p53 protein degradation and extended p53's half-life by targeting USP15, SPIN1. BSP experiments confirmed that miR-3133 promoter methylation is an important reason for its low expression. CONCLUSION: miR-3133 inhibits GIC progression by activating the Hippo and p53 signalling pathways via multi-targets, including RNF146, thereby providing prognostic factors and valuable potential therapeutic targets for GIC.

13.
Front Neurosci ; 17: 1194299, 2023.
Article En | MEDLINE | ID: mdl-37383104

Posterior cingulate cortex (area 23, A23) in human and monkeys is a critical component of the default mode network and is involved in many diseases such as Alzheimer's disease, autism, depression, attention deficit hyperactivity disorder and schizophrenia. However, A23 has not yet identified in rodents, and this makes modeling related circuits and diseases in rodents very difficult. Using a comparative approach, molecular markers and unique connectional patterns this study has uncovered the location and extent of possible rodent equivalent (A23~) of the primate A23. A23 ~ but not adjoining areas in the rodents displays strong reciprocal connections with anteromedial thalamic nucleus. Rodent A23 ~ reciprocally connects with the medial pulvinar and claustrum as well as with anterior cingulate, granular retrosplenial, medial orbitofrontal, postrhinal, and visual and auditory association cortices. Rodent A23 ~ projects to dorsal striatum, ventral lateral geniculate nucleus, zona incerta, pretectal nucleus, superior colliculus, periaqueductal gray, and brainstem. All these findings support the versatility of A23 in the integration and modulation of multimodal sensory information underlying spatial processing, episodic memory, self-reflection, attention, value assessment and many adaptive behaviors. Additionally, this study also suggests that the rodents could be used to model monkey and human A23 in future structural, functional, pathological, and neuromodulation studies.

14.
Fish Physiol Biochem ; 49(4): 627-639, 2023 Aug.
Article En | MEDLINE | ID: mdl-37341909

Adipose tissue is an essential tissue for lipid deposition in fish and is associated with excess lipid accumulation in aquaculture. However, the knowledge of the distribution and characterization of adipose tissue in fish still needs further investigation. This study for the first time discovered perirenal adipose tissue (PAT) in large yellow croaker by MRI and CT technologies. Then, the morphological and cytological characteristics of PAT were observed, showing a typical characteristic of white adipose tissue. Meanwhile, the mRNA expression of marker genes of white adipose tissue was highly expressed in PAT compared with the liver and muscle in large yellow croaker. Moreover, based on the discovery of PAT, preadipocytes from PAT were isolated, and the differentiation system of preadipocytes was established. The lipid droplet and TG content of cell were gradually increased during adipocyte differentiation. In addition, mRNA expressions of lipoprotein lipase, adipose triglyceride lipase, and transcription factors related to adipogenesis (cebpα, srebp1, pparα, and pparγ) were quantified to explain the regulation mechanism during the differentiation process. In summary, the present study first discovered perirenal adipose tissue in fish, then explored the characterization of PAT, and revealed the regulation of adipocyte differentiation. These results could advance the understanding of adipose tissue in fish and provide a novel idea for the study of the mechanism of lipid accumulation.


Adipose Tissue , Perciformes , Animals , Adipose Tissue/metabolism , Cell Differentiation , Perciformes/genetics , Perciformes/metabolism , Adipocytes/metabolism , RNA, Messenger/metabolism , Lipids , Fish Proteins/genetics
15.
Mol Cancer ; 22(1): 60, 2023 03 25.
Article En | MEDLINE | ID: mdl-36966334

BACKGROUND: Fibroblast growth factors (FGFs) and their receptors (FGFRs) play a crucial role in cell fate and angiogenesis, with dysregulation of the signaling axis driving tumorigenesis. Therefore, many studies have targeted FGF/FGFR signaling for cancer therapy and several FGFR inhibitors have promising results in different tumors but treatment efficiency may still be improved. The clinical use of immune checkpoint blockade (ICB) has resulted in sustained remission for patients. MAIN: Although there is limited data linking FGFR inhibitors and immunotherapy, preclinical research suggest that FGF/FGFR signaling is involved in regulating the tumor microenvironment (TME) including immune cells, vasculogenesis, and epithelial-mesenchymal transition (EMT). This raises the possibility that ICB in combination with FGFR-tyrosine kinase inhibitors (FGFR-TKIs) may be feasible for treatment option for patients with dysregulated FGF/FGFR signaling. CONCLUSION: Here, we review the role of FGF/FGFR signaling in TME regulation and the potential mechanisms of FGFR-TKI in combination with ICB. In addition, we review clinical data surrounding ICB alone or in combination with FGFR-TKI for the treatment of FGFR-dysregulated tumors, highlighting that FGFR inhibitors may sensitize the response to ICB by impacting various stages of the "cancer-immune cycle".


Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Fibroblast Growth Factor/therapeutic use , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism
16.
Cell Commun Signal ; 21(1): 38, 2023 02 17.
Article En | MEDLINE | ID: mdl-36803368

BACKGROUND: Large tumor suppressor kinase 1 (LATS1), one of the predominant components of the Hippo pathway, has been characterized as a key player controlling the proliferation and invasion of cancer cells, including gastric cancer (GC) cells. However, the mechanism by which the functional stability of LATS1 is modulated has yet to be elucidated. METHODS: Online prediction tools, immunohistochemistry and western blotting assays were used to explore the expression of WW domain-containing E3 ubiquitin ligase 2 (WWP2) in GC cells and tissues. Gain- and loss-of-function assays, as well as rescue experiments were performed to determine the role of the WWP2-LATS1 axis in cell proliferation and invasion. Additionally, the mechanisms involving WWP2 and LATS1 were assessed by coimmunoprecipitation (Co-IP), immunofluorescence, cycloheximide and in vivo ubiquitination assays. RESULTS: Our results demonstrate a specific interaction between LATS1 and WWP2. WWP2 was markedly upregulated and correlated with disease progression and a poor prognosis in GC patients. Moreover, ectopic WWP2 expression facilitated the proliferation, migration and invasion of GC cells. Mechanistically, WWP2 interacts with LATS1, resulting in its ubiquitination and subsequent degradation, leading to increased transcriptional activity of YAP1. Importantly, LATS1 depletion abolished the suppressive effects of WWP2 knockdown on GC cells. Furthermore, WWP2 silencing attenuated tumor growth by regulating the Hippo-YAP1 pathway in vivo. CONCLUSIONS: Our results define the WWP2-LATS1 axis as a critical regulatory mechanism of the Hippo-YAP1 pathway that promotes GC development and progression. Video Abstract.


Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Hippo Signaling Pathway , Cell Proliferation
17.
Clin Nephrol ; 99(1): 41-48, 2023 Jan.
Article En | MEDLINE | ID: mdl-36331018

Overlap syndrome is the combination of autoimmune liver diseases, and this term usually describes the coexistence of autoimmune hepatitis (AIH) and primary biliary cirrhosis (PBC) in the same patient. Membranous nephropathy (MN) is the most common pattern of idiopathic nephrotic syndrome in patients without diabetes. The coexistence of PBC-AIH overlap syndrome and MN is very rare. Herein, the patient we describe exhibited large amounts of proteinuria and hepatic dysfunction nearly at the same time. We administered azathioprine to our patient. Fortunately, the patient demonstrated a good response to azathioprine, including a partial reduction in proteinuria from ~ 12.5 g/D to 2.62 g/D after 21 months of observation and the improvement of liver function. Our findings suggest that azathioprine may be a suitable treatment option for patients presenting with coexisting PBC-AIH overlap syndrome and MN.


Glomerulonephritis, Membranous , Hepatitis, Autoimmune , Liver Cirrhosis, Biliary , Humans , Hepatitis, Autoimmune/complications , Hepatitis, Autoimmune/diagnosis , Hepatitis, Autoimmune/drug therapy , Liver Cirrhosis, Biliary/complications , Liver Cirrhosis, Biliary/diagnosis , Liver Cirrhosis, Biliary/drug therapy , Azathioprine/therapeutic use , Ursodeoxycholic Acid , Glomerulonephritis, Membranous/complications , Glomerulonephritis, Membranous/diagnosis , Glomerulonephritis, Membranous/drug therapy , Treatment Outcome , Syndrome
18.
Eur J Cancer ; 178: 1-12, 2023 01.
Article En | MEDLINE | ID: mdl-36370604

BACKGROUND: KN026 is a novel human epidermal growth factor receptor 2 (HER2)-targeted bispecific antibody that binds two distinct domains of HER2. We report the safety and efficacy results of the phase 2 trial in patients with advanced HER2-expressing gastric or gastroesophageal junction cancer who failed from at least one prior line of standard treatment. MATERIAL AND METHODS: In this open-label, multicentre, phase 2 trial, eligible patients were enrolled in the high-level HER2 cohort or low-level HER2 cohort and assigned to receive KN026 10 mg/kg (once a week), 20 mg/kg (once every two weeks) or 30 mg/kg (once every three weeks) intravenously. The primary end-points were the objective response rate (ORR) and duration of response assessed according to Response Evaluation Criteria in Solid Tumours (version 1.1). RESULTS: Between 17th June 2019 and 23rd August 2021, 45 patients were enrolled and received at least one dose of KN026, including 27 patients in the high-level HER2 cohort, 14 patients in the low-level HER2 cohort and four patients who had no HER2 expression. The ORR in the high-level HER2 cohort was 56% (95% confidence interval [CI] 35%-76%), with a durable response duration of 9.7 months (95% CI 4.2-not evaluable); while for the patients with low-level HER2, the ORR was 14% (95% CI 2%-43%). The most frequent ≥ grade 3 treatment-emergent adverse events were gastrointestinal disorders (five patients, 11%). No drug-related deaths were reported. CONCLUSIONS: KN026 showed a favourable safety profile and promising anti-tumour activity. Our results support further studies evaluating KN026 and the combination treatment with other active drugs in patients with advanced gastric or gastroesophageal junction cancer having high-level HER2 expression.


Antibodies, Bispecific , Antineoplastic Agents , Esophageal Neoplasms , Stomach Neoplasms , Humans , Antibodies, Bispecific/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Esophageal Neoplasms/pathology , Esophagogastric Junction/pathology , Receptor, ErbB-2 , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Trastuzumab
19.
Br J Nutr ; 129(10): 1657-1666, 2023 05 28.
Article En | MEDLINE | ID: mdl-34556193

Angiopoietin-like 4 (ANGPTL4) is a potent regulator of TAG metabolism, but knowledge of the mechanisms underlying ANGPTL4 transcription in response to fatty acids is still limited in teleost. In the current study, we explored the molecular characterisation of ANGPTL4 and regulatory mechanisms of ANGPTL4 in response to fatty acids in large yellow croaker (Larimichthys crocea). Here, croaker angptl4 contained a 1416 bp open reading frame encoding a protein of 471 amino acids with highly conserved 12-amino acid consensus motif. Angptl4 was widely expressed in croaker, with the highest expression in the liver. In vitro, oleic and palmitic acids (OA and PA) treatments strongly increased angptl4 mRNA expression in croaker hepatocytes. Moreover, angptl4 expression was positively regulated by PPAR family (PPAR-α, ß and γ), and expression of PPARγ was also significantly increased in response to OA and PA. Moreover, inhibition of PPARγ abrogated OA- or PA-induced angptl4 mRNA expression. Beyond that, PA might increase angptl4 expression partly via the insulin signalling. Overall, the expression of ANGPTL4 is strongly upregulated by OA and PA via PPARγ in the liver of croaker, which contributes to improve the understanding of the regulatory mechanisms of ANGPTL4 in fish.


Palmitic Acids , Perciformes , Animals , Palmitic Acids/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Amino Acid Sequence , Fatty Acids/metabolism , Liver/metabolism , Perciformes/genetics , Perciformes/metabolism , RNA, Messenger/metabolism , Angiopoietins/genetics , Angiopoietins/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism
20.
Front Nutr ; 9: 1024631, 2022.
Article En | MEDLINE | ID: mdl-36505250

Unfolded protein responses from endoplasmic reticulum (ER) stress have been implicated in inflammatory signaling. The vicious cycle of ER stress and inflammation makes regulation even more difficult. This study examined effects of farnesoid X receptor (FXR) in ER-stress regulation in large yellow croakers. The soybean-oil-diet-induced expression of ER stress markers was decreased in fish with FXR activated. In croaker macrophages, FXR activation or overexpression significantly reduced inflammation and ER stress caused by tunicamycin (TM), which was exacerbated by FXR knockdown. Further investigation showed that the TM-induced phosphorylation of PERK and EIF2α was inhibited by the overexpression of croaker FXR, and it was increased by FXR knockdown. Croaker NCK1 was then confirmed to be a regulator of PERK, and its expression in macrophages is increased by FXR overexpression and decreased by FXR knockdown. The promoter activity of croaker NCK1 was inhibited by yin-yang 1 (YY1). Furthermore, the results show that croaker FXR overexpression could suppress the P65-induced promoter activity of YY1 in HEK293t cells and decrease the TM-induced expression of yy1 in macrophages. These results indicate that FXR could suppress P65-induced yy1 expression and then increase NCK1 expression, thereby inhibiting the PERK pathway. This study may benefit the understanding of ER stress regulation in fish, demonstrating that FXR can be used in large yellow croakers as an effective target for regulating ER stress and inflammation.

...